Mechanisms for Maintaining Cell-Shape in Rod-Shaped Gram-Negative Bacteria
نویسندگان
چکیده
منابع مشابه
Mechanisms for maintaining cell shape in rod-shaped Gram-negative bacteria.
For the rod-shaped Gram-negative bacterium Escherichia coli, changes in cell shape have critical consequences for motility, immune system evasion, proliferation and adhesion. For most bacteria, the peptidoglycan cell wall is both necessary and sufficient to determine cell shape. However, how the synthesis machinery assembles a peptidoglycan network with a robustly maintained micron-scale shape ...
متن کاملCell shape and cell-wall organization in Gram-negative bacteria.
In bacterial cells, the peptidoglycan cell wall is the stress-bearing structure that dictates cell shape. Although many molecular details of the composition and assembly of cell-wall components are known, how the network of peptidoglycan subunits is organized to give the cell shape during normal growth and how it is reorganized in response to damage or environmental forces have been relatively ...
متن کاملSynthesis of peptidoglycan and membrane during the division cycle of rod-shaped, gram-negative bacteria.
A modified procedure for determining the pattern of peptidoglycan synthesis during the division cycle has allowed the measurement of the rate of side wall synthesis during the division cycle without the contribution due to pole formation. As predicted by a model proposing that the surface growth of the cell is regulated by mass increase, we find a decrease in side wall synthesis in the latter h...
متن کاملElasticity of the rod-shaped gram-negative eubacteria.
We report a theoretical calculation of the elasticity of the peptidoglycan network, the only stress-bearing part of rod-shaped Gram-negative eubacteria. The peptidoglycan network consists of elastic peptides and inextensible glycan strands, and it has been proposed that the latter form zigzag filaments along the circumference of the cylindrical bacterial shell. The zigzag geometry of the glycan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2011
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2010.12.3010