Mechanism of tyrosine D oxidation in Photosystem II
نویسندگان
چکیده
منابع مشابه
Mechanism of tyrosine D oxidation in Photosystem II.
Using quantum mechanics/molecular mechanics calculations and the 1.9-Å crystal structure of Photosystem II [Umena Y, Kawakami K, Shen J-R, Kamiya N (2011) Nature 473(7345):55-60], we investigated the H-bonding environment of the redox-active tyrosine D (TyrD) and obtained insights that help explain its slow redox kinetics and the stability of TyrD(•). The water molecule distal to TyrD, located ...
متن کاملLight-induced water oxidation in photosystem II.
The photosystem II core complex (PSIIcc) is the key enzyme of oxygenic photosynthesis, as it catalyzes the light-induced oxidation of water to form dioxgyen and protons. It is located in the thylakoid membrane of cyanobacteria, algae, and plants and consists of 20 protein subunits binding about 100 cofactors. In this review, we discuss what is presently known about the "donor side" of PSIIcc, c...
متن کاملFunction of tyrosine Z in water oxidation by photosystem II: electrostatical promotor instead of hydrogen abstractor.
Photosynthetic water oxidation by photosystem II is mediated by a Mn4 cluster, a cofactor X still chemically ill-defined, and a tyrosine, YZ (D1-Tyr161). Before the final reaction with water proceeds to yield O2 (transition S4-->S0), two oxidizing equivalents are stored on Mn4 (S0-->S1-->S2), a third on X (S2-->S3), and a forth on YZ(S3-->S4). It has been proposed that YZ functions as a pure el...
متن کاملProton-coupled electron transfer in a model for tyrosine oxidation in photosystem II.
Theoretical calculations of a model for tyrosine oxidation in photosystem II are presented. In this model system, an electron is transferred to ruthenium from tyrosine, which is concurrently deprotonated. This investigation is motivated by experimental measurements of the dependence of the rates on pH and temperature (Sjödin et al. J. Am. Chem. Soc. 2000, 122, 3932). The mechanism is proton-cou...
متن کاملWater oxidation chemistry of photosystem II.
Photosystem II (PSII) uses light energy to split water into protons, electrons and O2. In this reaction, nature has solved the difficult chemical problem of efficient four-electron oxidation of water to yield O2 without significant amounts of reactive intermediate species such as superoxide, hydrogen peroxide and hydroxyl radicals. In order to use nature's solution for the design of artificial ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2013
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1300817110