Mechanical Properties of Titanium Diboride Sintered with Iron Aluminide Additive
نویسندگان
چکیده
منابع مشابه
Material Properties of Titanium Diboride
The physical, mechanical, and thermal properties of polycrystalline TiB2 are examined with an emphasis on the significant dependence of the properties on the density and grain size of the material specimens. Using trend analysis, property relations, and interpolation methods, a coherent set of trend values for the properties of polycrystalline TiB2 is determined for a mass fraction of TiB2 ⩾ 98...
متن کاملReactive Spark Plasma Sintering and Mechanical Properties of Zirconium Diboride–Titanium Diboride Ultrahigh Temperature Ceramic Solid Solutions
Ultrahigh temperature ceramics (UHTCs) such as diborides of zirconium, hafnium tantalum and their composites are considered to be the candidate materials for thermal protection systems of hypersonic vehicles due to their exceptional combination of physical, chemical and mechanical properties. A composite of ZrB2-TiB2 is expected to have better properties. In this study, an attempt has been made...
متن کاملMicrostructure and Properties of Iron Aluminide Coatings
Corrosion-resistant coatings based on the iron aluminide intermetallic compound Fe3Al are currently being investigated for fossil energy applications. Fe3Al possesses excellent intrinsic high-temperature oxidation and sulfidation resistance, and a significant effort has been made in the development of bulk alloys based on it. While substantial progress has been made, the widespread use of these...
متن کاملTitanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts
Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheri...
متن کاملEffect of Energy Input on Microstructure and Mechanical Properties of Titanium Aluminide Alloy Fabricated by the Additive Manufacturing Process of Electron Beam Melting
Titanium aluminides qualify adequately for advanced aero-engine applications in place of conventional nickel based superalloys. The combination of high temperature properties and lower density gives an edge to the titanium aluminide alloys. Nevertheless, challenges remain on how to process these essentially intermetallic alloys in to an actual product. Electron Beam Melting (EBM), an Additive M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: MATERIALS TRANSACTIONS
سال: 2019
ISSN: 1345-9678,1347-5320
DOI: 10.2320/matertrans.m2018369