Measure-theoretic quantifiers and Haar measure
نویسندگان
چکیده
منابع مشابه
The Haar Measure
In this section, we give a brief review of the measure theory which will be used in later sections. We use [R, Chapters 1 and 2] as our main resource. A σ-algebra on a set X is a collectionM of subsets of X such that ∅ ∈M, if S ∈M, then X \ S ∈ M, and if a countable collection S1, S2, . . . ∈ M, then ∪i=1Si ∈ M. That is, M is closed under complements and countable unions, and contains the empty...
متن کاملMeasure Theoretic Probability
Preface In these notes we explain the measure theoretic foundations of modern probability. The notes are used during a course that had as one of its principal aims a swift introduction to measure theory as far as it is needed in modern probability, e.g. to define concepts as conditional expectation and to prove limit theorems for martingales. Everyone with a basic notion of mathematics and prob...
متن کاملMeasure-theoretic Uniformity
Here we present the principal ideas and results of [5] with some indications of proof. We introduce the notion of measure-theoretic uniformity, and we describe its use in recursion theory, hyperarithmetic analysis, and set theory. In recursion theory we show that the set of all sets T such that the ordinals recursive in T are the recursive ordinals has measure 1. In set theory we obtain all of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1982
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1982-0663868-9