Mean number of real zeros of a random trigonometric polynomial
نویسندگان
چکیده
منابع مشابه
Mean Number of Real Zeros of a Random Hyperbolic Polynomial
Consider the random hyperbolic polynomial, f(x) = 1a1 coshx+···+np × an coshnx, in which n and p are integers such that n ≥ 2, p ≥ 0, and the coefficients ak(k = 1,2, . . . ,n) are independent, standard normally distributed random variables. If νnp is the mean number of real zeros of f(x), then we prove that νnp = π−1 logn+ O{(logn)1/2}.
متن کاملCovariance of the number of real zeros of a random trigonometric polynomial
For random coefficients aj and bj we consider a random trigonometric polynomial defined as Tn(θ) = ∑n j=0{aj cos jθ + bj sin jθ}. The expected number of real zeros of Tn(θ) in the interval (0,2π) can be easily obtained. In this note we show that this number is in fact n/ √ 3. However the variance of the above number is not known. This note presents a method which leads to the asymptotic value f...
متن کاملHow many zeros of a random polynomial are real?
Abstract. We provide an elementary geometric derivation of the Kac integral formula for the expected number of real zeros of a random polynomial with independent standard normally distributed coefficients. We show that the expected number of real zeros is simply the length of the moment curve (1, t, . . . , tn) projected onto the surface of the unit sphere, divided by π. The probability density...
متن کاملThe Real Zeros of a Random Polynomial with Dependent Coefficients
Abstract. Mark Kac gave one of the first results analyzing random polynomial zeros. He considered the case of independent standard normal coefficients and was able to show that the expected number of real zeros for a degree n polynomial is on the order of 2 π logn, as n → ∞. Several years later, Sambandham considered two cases with some dependence assumed among the coefficients. The first case ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1991
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1991-1039266-0