منابع مشابه
Mean curvature flow with obstacles
We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obstacles, in the two-dimensional case we show existence and uniqueness of a regular solution before the onset of singularities. Finally, we discuss a...
متن کاملMean Curvature Blowup in Mean Curvature Flow
In this note we establish that finite-time singularities of the mean curvature flow of compact Riemannian submanifolds M t →֒ (N, h) are characterised by the blow up of the mean curvature.
متن کاملMean curvature flow with obstacles: existence, uniqueness and regularity of solutions
We show short time existence and uniqueness of C solutions to the mean curvature flow with obstacles, when the obstacles are of class C. If the initial interface is a periodic graph we show long time existence of the evolution and convergence to a minimal constrained hypersurface.
متن کاملMean curvature flow
Mean curvature flow is the negative gradient flow of volume, so any hypersurface flows through hypersurfaces in the direction of steepest descent for volume and eventually becomes extinct in finite time. Before it becomes extinct, topological changes can occur as it goes through singularities. If the hypersurface is in general or generic position, then we explain what singularities can occur un...
متن کاملRiemannian Mean Curvature Flow
In this paper we explicitly derive a level set formulation for mean curvature flow in a Riemannian metric space. This extends the traditional geodesic active contour framework which is based on conformal flows. Curve evolution for image segmentation can be posed as a Riemannian evolution process where the induced metric is related to the local structure tensor. Examples on both synthetic and re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2012
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2012.03.002