MCG Analysis with Independent Component Analysis Based on 3-D Measurements
نویسندگان
چکیده
منابع مشابه
Rank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملBankruptcy Prediction based on Independent Component Analysis
Bankruptcy prediction is of great importance in financial statement analysis to minimize the risk of decision strategies. It attempts to separate distress companies from healthy ones according to some financial indicators. Since the real data usually contains irrelevant, redundant and correlated variables, it is necessary to reduce the dimensionality before performing the prediction. In this pa...
متن کاملTumor classification based on independent component analysis
This paper proposes a new method for tumor classification using gene expression data, which mainly contains three steps. Firstly, the original DNA microarray gene expression data are selected using t-statistics. Secondly, the selected genes are modeled by Independent Component Analysis (ICA). Finally, Support Vector Machine (SVM) is used to classify the modeling data. To show the validity of th...
متن کاملCopula Based Independent Component Analysis
We propose a parametric version of Independent Component Analysis (ICA) via Copulas families of multivariate distributions that join univariate margins to multivariate distributions. Our procedure exploits the role for copula models in information theory and in measures of association, specifically: the use of copulae densities as parametric mutual information, and as measures of association on...
متن کاملFeature Extraction with Weighted Samples Based on Independent Component Analysis
This study investigates a new method of feature extraction for classification problems with a considerable amount of outliers. The method is a weighted version of our previous work based on the independent component analysis (ICA). In our previous work, ICA was applied to feature extraction for classification problems by including class information in the training. The resulting features contai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Magnetics Society of Japan
سال: 2004
ISSN: 0285-0192
DOI: 10.3379/jmsjmag.28.463