Maximum margin clustering for state decomposition of metastable systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum Margin Clustering for State Decomposition of Metastable Systems

When studying a metastable dynamical system, a prime concern is how to decompose the phase space into a set of metastable states. Unfortunately, the metastable state decomposition based on simulation or experimental data is still a challenge. The most popular and simplest approach is geometric clustering which is developed based on the classical clustering technique. However, the prerequisites ...

متن کامل

Hierarchical Maximum-Margin Clustering

We present a hierarchical maximum-margin clustering method for unsupervised data analysis. Our method extends beyond flat maximummargin clustering, and performs clustering recursively in a top-down manner. We propose an effective greedy splitting criteria for selecting which cluster to split next, and employ regularizers that enforce feature sharing/competition for capturing data semantics. Exp...

متن کامل

Maximum Margin Temporal Clustering

Temporal Clustering (TC) refers to the factorization of multiple time series into a set of non-overlapping segments that belong to k temporal clusters. Existing methods based on extensions of generative models such as k-means or Switching Linear Dynamical Systems (SLDS) often lead to intractable inference and lack a mechanism for feature selection, critical when dealing with high dimensional da...

متن کامل

Maximum Margin Clustering

We propose a new method for clustering based on finding maximum margin hyperplanes through data. By reformulating the problem in terms of the implied equivalence relation matrix, we can pose the problem as a convex integer program. Although this still yields a difficult computational problem, the hard-clustering constraints can be relaxed to a soft-clustering formulation which can be feasibly s...

متن کامل

Latent Maximum Margin Clustering

We present a maximum margin framework that clusters data using latent variables. Using latent representations enables our framework to model unobserved information embedded in the data. We implement our idea by large margin learning, and develop an alternating descent algorithm to effectively solve the resultant non-convex optimization problem. We instantiate our latent maximum margin clusterin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Neurocomputing

سال: 2015

ISSN: 0925-2312

DOI: 10.1016/j.neucom.2014.12.093