Maximum ATSP with Weights Zero and One via Half-Edges
نویسندگان
چکیده
منابع مشابه
A 3/4-Approximation Algorithm for Maximum ATSP with Weights Zero and One
We present a polynomial time 3/4-approximation algorithm for the maximum asymmetric TSP with weights zero and one. As applications, we get a 5/4-approximation algorithm for the (minimum) asymmetric TSP with weights one and two and a 3/4-approximation algorithm for the Maximum Directed Path Packing Problem.
متن کاملZero Weights in Weak Efficient and Inefficient Points with AHP
In this paper an approach in data envelopment analysis dealing with evaluation of non – zero slacks was propounded. This approach intends that weight of inefficient and weak efficient points that have been evaluated as zero weight, be considered as positive weight, and also in this approach, the pareto efficiency evaluates the picture of this point. In this approach positive weights in the i...
متن کاملSome zero-sum constants with weights
For an abelian group G, the Davenport constant D(G) is defined to be the smallest natural number k such that any sequence of k elements in G has a non-empty subsequence whose sum is zero (the identity element). Motivated by some recent developments around the notion of Davenport constant with weights, we study them in some basic cases. We also define a new combinatorial invariant related to (Z/...
متن کاملImproved Approximation Algorithms for Metric Maximum ATSP and Maximum 3-Cycle Cover Problems
We consider an APX-hard variant (∆-Max-ATSP) and an APX-hard relaxation (Max-3-DCC) of the classical traveling salesman problem. We present a 31 40 -approximation algorithm for ∆-Max-ATSP and a 34 -approximation algorithm for Max-3-DCC with polynomial running time. The results are obtained via a new way of applying techniques for computing undirected cycle covers to directed problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theory of Computing Systems
سال: 2017
ISSN: 1432-4350,1433-0490
DOI: 10.1007/s00224-017-9818-1