Maximum-a-Posteriori Estimation with Bayesian Confidence Regions
نویسندگان
چکیده
منابع مشابه
Disparity Estimation Based on Bayesian Maximum A Posteriori (MAP) Algorithm∗
In this paper, a general formula of disparity estimation based on Bayesian Maximum A Posteriori (MAP) algorithm is derived and implemented with simplified probabilistic models. The formula is the generalized probabilistic diffusion equation based on Bayesian model, and can be implemented into some different forms corresponding to the probabilistic models in the disparity neighborhood system or ...
متن کاملBayesian Maximum a Posteriori Multiple Testing Procedure
We consider a Bayesian approach to multiple hypothesis testing. A hierarchical prior model is based on imposing a prior distribution π(k) on the number of hypotheses arising from alternatives (false nulls). We then apply the maximum a posteriori (MAP) rule to find the most likely configuration of null and alternative hypotheses. The resulting MAP procedure and its closely related step-up and st...
متن کاملOn Using Maximum a Posteriori Probability Based on a Bayesian Model for Oscillometric Blood Pressure Estimation
The maximum amplitude algorithm (MAA) is generally utilized in the estimation of the pressure values, and it uses heuristically obtained ratios of systolic and diastolic oscillometric amplitude to the mean arterial pressure (known as systolic and diastolic ratios) in order to estimate the systolic and diastolic pressures. This paper proposes a Bayesian model to estimate the systolic and diastol...
متن کاملBatch Maximum Likelihood (ML) and Maximum A Posteriori (MAP) Estimation With Process Noise for Tracking Applications
Batch maximum likelihood (ML) and maximum a posteriori (MAP) estimation with process noise is now more than thirty-five years old, and its use in multiple target tracking has long been considered to be too computationally intensive for real-time applications. While this may still be true for general usage, it is ideally suited for special needs such as bias estimation, track initiation and spaw...
متن کاملPopulation pharmacokinetic/pharmacodynamic mixture models via maximum a posteriori estimation
Pharmacokinetic/pharmacodynamic phenotypes are identified using nonlinear random effects models with finite mixture structures. A maximum a posteriori probability estimation approach is presented using an EM algorithm with importance sampling. Parameters for the conjugate prior densities can be based on prior studies or set to represent vague knowledge about the model parameters. A detailed sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Imaging Sciences
سال: 2017
ISSN: 1936-4954
DOI: 10.1137/16m1071249