Maximal subgroups and the Jordan-Hölder Theorem
نویسندگان
چکیده
منابع مشابه
The Jordan-Hölder Theorem
This submission contains theories that lead to a formalization of the proof of the Jordan-Hölder theorem about composition series of finite groups. The theories formalize the notions of isomorphism classes of groups, simple groups, normal series, composition series, maximal normal subgroups. Furthermore, they provide proofs of the second isomorphism theorem for groups, the characterization theo...
متن کاملOn the Jordan-Hölder decomposition of proof nets
Having deened a notion of homology for paired graphs, M etayer ((Ma]) proves a ho-mological correctness criterion for proof nets, and states that for any proof net G there exists a Jordan-HH older decomposition of H 0 (G). This decomposition is determined by a certain enumeration of the pairs in G. We correct his proof of this fact and show that there exists a 1-1 correspondence between these J...
متن کاملThe Jordan-Hölder Theorem
The goal of this article is to formalize the Jordan-Hölder theorem in the context of group with operators as in the book [5]. Accordingly, the article introduces the structure of group with operators and reformulates some theorems on a group already present in the Mizar Mathematical Library. Next, the article formalizes the Zassenhaus butterfly lemma and the Schreier refinement theorem, and def...
متن کاملCounting Maximal Arithmetic Subgroups Mikhail Belolipetsky with an Appendix by Jordan Ellenberg and Akshay Venkatesh
We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group using an extension of the method due to Borel and Prasad.
متن کاملCounting Maximal Arithmetic Subgroups Mikhail Belolipetsky with an Appendix by Jordan Ellenberg and Akshay Venkatesh
We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group using an extension of the method due to Borel and Prasad. As an application we prove a nonuniform case of a conjecture of Lubotzky et al. on the growth of lattices in higher rank semi-simple Lie group H, which claims that the growth rate is asymptotically equal to the congruenc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics
سال: 1989
ISSN: 0263-6115
DOI: 10.1017/s1446788700030846