Maximal subgroups and the Jordan-Hölder Theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Jordan-Hölder Theorem

This submission contains theories that lead to a formalization of the proof of the Jordan-Hölder theorem about composition series of finite groups. The theories formalize the notions of isomorphism classes of groups, simple groups, normal series, composition series, maximal normal subgroups. Furthermore, they provide proofs of the second isomorphism theorem for groups, the characterization theo...

متن کامل

On the Jordan-Hölder decomposition of proof nets

Having deened a notion of homology for paired graphs, M etayer ((Ma]) proves a ho-mological correctness criterion for proof nets, and states that for any proof net G there exists a Jordan-HH older decomposition of H 0 (G). This decomposition is determined by a certain enumeration of the pairs in G. We correct his proof of this fact and show that there exists a 1-1 correspondence between these J...

متن کامل

The Jordan-Hölder Theorem

The goal of this article is to formalize the Jordan-Hölder theorem in the context of group with operators as in the book [5]. Accordingly, the article introduces the structure of group with operators and reformulates some theorems on a group already present in the Mizar Mathematical Library. Next, the article formalizes the Zassenhaus butterfly lemma and the Schreier refinement theorem, and def...

متن کامل

Counting Maximal Arithmetic Subgroups Mikhail Belolipetsky with an Appendix by Jordan Ellenberg and Akshay Venkatesh

We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group using an extension of the method due to Borel and Prasad.

متن کامل

Counting Maximal Arithmetic Subgroups Mikhail Belolipetsky with an Appendix by Jordan Ellenberg and Akshay Venkatesh

We study the growth rate of the number of maximal arithmetic subgroups of bounded covolumes in a semi-simple Lie group using an extension of the method due to Borel and Prasad. As an application we prove a nonuniform case of a conjecture of Lubotzky et al. on the growth of lattices in higher rank semi-simple Lie group H, which claims that the growth rate is asymptotically equal to the congruenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics

سال: 1989

ISSN: 0263-6115

DOI: 10.1017/s1446788700030846