Maximal full matrices.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unitary Matrices with Maximal or near Maximal Diversity Product∗

Fully diversified constellations with large diversity product are playing an important role in improving the data rate of systems with multiple antennas. In this paper we study some optimal and some near optimal constellations. For constellations with exactly 3 elements several methods are provided to estimate the performance of the constellation. In the case of diagonal constellations, tools f...

متن کامل

Maximal Accurate Forests from Distance Matrices

We present a fast converging method for distance-based phylogenetic inference, which is novel in two respects. First, it is the only method (to our knowledge) to guarantee accuracy when knowledge about the model tree, i.e bounds on the edge lengths, is not assumed. Second, our algorithm guarantees that, with high probability, no false assertions are made. The algorithm produces a maximal forest...

متن کامل

Graphs and matrices with maximal energy

Given a complex m n matrix A; we index its singular values as 1 (A) 2 (A) ::: and call the value E (A) = 1 (A)+ 2 (A)+ ::: the energy of A; thereby extending the concept of graph energy, introduced by Gutman. Koolen and Moulton proved that E (G) (n=2) (1 + p n) for any graph G of order n and exhibited an in…nite family of graphs with E (G) = (v (G) =2) 1 + p v (G) . We prove that for all su¢ ci...

متن کامل

On the maximal angle between copositive matrices

Hiriart-Urruty and Seeger have posed the problem of finding the maximal possible angle θmax(Cn) between two copositive matrices of order n [J.-B. Hiriart-Urruty and A. Seeger. A variational approach to copositive matrices. SIAM Rev., 52:593–629, 2010.]. They have proved that θmax(C2) = 3 4 π and conjectured that θmax(Cn) is equal to 3 4 π for all n ≥ 2. In this note, their conjecture is disprov...

متن کامل

On Minors of Maximal Determinant Matrices

By an old result of Cohn (1965), a Hadamard matrix of order n has no proper Hadamard submatrix of order m > n/2. We generalize this result to maximal determinant submatrices of Hadamard matrices, and show that an interval of length ∼ n/2 is excluded from the allowable orders. We make a conjecture regarding a lower bound for sums of squares of minors of maximal determinant matrices, and give evi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Notre Dame Journal of Formal Logic

سال: 1972

ISSN: 0029-4527

DOI: 10.1305/ndjfl/1093894639