Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations

This paper investigates the construction of rank-metric codes with specified Ferrers diagram shapes. These codes play a role in the multilevel construction for subspace codes. A conjecture from 2009 provides an upper bound for the dimension of a rank-metric code with given specified Ferrers diagram shape and rank distance. While the conjecture in its generality is wide open, several cases have ...

متن کامل

A Singleton Bound for Generalized Ferrers Diagram Rank Metric Codes

In this paper, we will employ the technique used in the proof of classical Singleton bound to derive upper bounds for rank metric codes and Ferrers diagram rank metric codes. These upper bounds yield the rank distance Singleton bound and an upper bound presented by Etzion and Silberstein respectively. Also we introduce generalized Ferrers diagram rank metric code which is a Ferrers diagram rank...

متن کامل

Subspace codes from Ferrers diagrams

In this paper we give new constructions of Ferrer diagram rank metric codes, which achieve the largest possible dimension. In particular, we prove several cases of a conjecture by T. Etzion and N. Silberstein. We also establish a sharp lower bound on the dimension of linear rank metric anticodes with a given profile. Combining our results with the multilevel construction, we produce examples of...

متن کامل

Monoids and Maximal Codes

In recent years codes that are not Uniquely Decipherable (UD) have been studied partitioning them in classes that localize the ambiguities of the code. A natural question is how we can extend the notion of maximality to codes that are not UD. In this paper we give an answer to this question. To do this we introduce a partial order in the set of submonoids of a monoid showing the existence, in t...

متن کامل

Separating Codes: Constructions and Bounds

Separating codes, initially introduced to test automaton, have revived lately in the study of fingerprinting codes, which are used for copyright protection. Separating codes play their role in making the fingerprinting scheme secure agains coalitions of pirates. We provide here better bounds, constructions and generalizations for these codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2019

ISSN: 0018-9448,1557-9654

DOI: 10.1109/tit.2019.2926256