Max-norm optimization for robust matrix recovery

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Max-norm optimization for robust matrix recovery

This paper studies the matrix completion problem under arbitrary sampling schemes. We propose a new estimator incorporating both max-norm and nuclear-norm regularization, based on which we can conduct efficient low-rank matrix recovery using a random subset of entries observed with additive noise under general non-uniform and unknown sampling distributions. This method significantly relaxes the...

متن کامل

Matrix completion via max-norm constrained optimization

This paper studies matrix completion under a general sampling model using the max-norm as a convex relaxation for the rank of the matrix. The optimal rate of convergence is established for the Frobenius norm loss. It is shown that the max-norm constrained minimization method is rate-optimal and it yields a more stable approximate recovery guarantee, with respect to the sampling distributions, t...

متن کامل

Joint Schatten p - norm and p - norm robust matrix completion for missing value recovery

The low-rank matrix completion problem is a fundamental machine learning and data mining problem with many important applications. The standard low-rank matrix completion methods relax the rank minimization problem by the trace norm minimization. However, this relaxation may make the solution seriously deviate from the original solution. Meanwhile, most completion methods minimize the squared p...

متن کامل

Matrix reconstruction with the local max norm

We introduce a new family of matrix norms, the “local max” norms, generalizing existing methods such as the max norm, the trace norm (nuclear norm), and the weighted or smoothed weighted trace norms, which have been extensively used in the literature as regularizers for matrix reconstruction problems. We show that this new family can be used to interpolate between the (weighted or unweighted) t...

متن کامل

Clustering using Max-norm Constrained Optimization

We suggest using the max-norm as a convex surrogate constraint for clustering. We show how this yields a better exact cluster recovery guarantee than previously suggested nuclear-norm relaxation, and study the effectiveness of our method, and other related convex relaxations, compared to other clustering approaches.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2017

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-017-1159-y