Matrix rings over polynomial identity rings
نویسندگان
چکیده
منابع مشابه
Polynomial Rings over Pseudovaluation Rings
Let R be a ring. Let σ be an automorphism of R. We define a σ-divided ring and prove the following. (1) Let R be a commutative pseudovaluation ring such that x ∈ P for any P ∈ Spec(R[x,σ]) . Then R[x,σ] is also a pseudovaluation ring. (2) Let R be a σ-divided ring such that x ∈ P for any P ∈ Spec(R[x,σ]). Then R[x,σ] is also a σ-divided ring. Let now R be a commutative Noetherian Q-algebra (Q i...
متن کاملDiagonal Matrix Reduction over Refinement Rings
Abstract: A ring R is called a refinement ring if the monoid of finitely generated projective R- modules is refinement. Let R be a commutative refinement ring and M, N, be two finitely generated projective R-nodules, then M~N if and only if Mm ~Nm for all maximal ideal m of R. A rectangular matrix A over R admits diagonal reduction if there exit invertible matrices p and Q such that PAQ is...
متن کاملStrongly Clean Matrix Rings over Commutative Rings
A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute. By SRC factorization, Borooah, Diesl, and Dorsey [3] completely determined when Mn(R) over a commutative local ring R is strongly clean. We generalize the notion of SRC factorization to commutative rings, prove that commutative n-SRC rings (n ≥ 2) are precisely the commutative local ring...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1972
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1972-0308187-3