Matrix completion by singular value thresholding: Sharp bounds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Singular Value Thresholding Algorithm for Matrix Completion

This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem, and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Off-the-sh...

متن کامل

Hybrid Singular Value Thresholding for Tensor Completion

In this paper, we study the low-rank tensor completion problem, where a high-order tensor with missing entries is given and the goal is to complete the tensor. We propose to minimize a new convex objective function, based on log sum of exponentials of nuclear norms, that promotes the low-rankness of unfolding matrices of the completed tensor. We show for the first time that the proximal operato...

متن کامل

Minimax Risk of Matrix Denoising by Singular Value Thresholding

An unknown m by n matrix X0 is to be estimated from noisy measurements Y = X0 + Z, where the noise matrix Z has i.i.d Gaussian entries. A popular matrix denoising scheme solves the nuclear norm penalization problem minX‖Y − X‖F /2 + λ‖X‖∗, where ‖X‖∗ denotes the nuclear norm (sum of singular values). This is the analog, for matrices, of `1 penalization in the vector case. It has been empiricall...

متن کامل

Generalized Singular Value Thresholding

This work studies the Generalized Singular Value Thresholding (GSVT) operator Proxg (·), Proxg (B) = argmin X m ∑

متن کامل

Generalized Singular Value Thresholding

This work studies the Generalized Singular Value Thresholding (GSVT) operator Proxg (·), Proxg (B) = argmin X m ∑

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2015

ISSN: 1935-7524

DOI: 10.1214/15-ejs1076