Matrix characterization of linear codes with arbitrary Hamming weight hierarchy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix characterization of linear codes with arbitrary Hamming weight hierarchy

The support of an [n, k] linear code C over a finite field Fq is the set of all coordinate positions such that at least one codeword has a nonzero entry in each of these coordinate position. The rth generalized Hamming weight dr (C), 1 r k, of C is defined as the minimum of the cardinalities of the supports of all [n, r] subcodes of C. The sequence (d1(C), d2(C), . . . , dk(C)) is called the Ha...

متن کامل

Computation of Minimum Hamming Weight for Linear Codes

In this paper, we consider the minimum Hamming weight for linear codes over special finite quasi-Frobenius rings. Furthermore, we obtain minimal free $R$-submodules of a finite quasi-Frobenius ring $R$  which contain a linear code and derive the relation between their minimum Hamming weights. Finally, we suggest an algorithm that computes this weight using the Grobner basis and we show that und...

متن کامل

Weight Distributions of Hamming Codes

We derive a recursive formula determining the weight distribution of the [n = (qm − 1)/(q − 1), n − m, 3] Hamming code H(m, q), when (m, q−1) = 1. Here q is a prime power. The proof is based on Moisio’s idea of using Pless power moment identity together with exponential sum techniques.

متن کامل

Weight Distributions of Hamming Codes (II)

In a previous paper, we derived a recursive formula determining the weight distributions of the [n = (qm − 1)/(q − 1), n−m, 3] Hamming code H(m,q), when (m, q−1) = 1. Here q is a prime power. We note here that the formula actually holds for any positive integer m and any prime power q, without the restriction (m,q − 1) = 1.

متن کامل

The weight hierarchy of a family of cyclic codes with arbitrary number of nonzeroes

The generalized Hamming weights (GHWs) are fundamental parameters of linear codes. GHWs are of great interest in many applications since they convey detailed information of linear codes. In this paper, we continue the work of [10] to study the GHWs of a family of cyclic codes with arbitrary number of nonzeroes. The weight hierarchy is determined by employing a number-theoretic approach.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2006

ISSN: 0024-3795

DOI: 10.1016/j.laa.2005.07.008