Matrix calculations for moments of Markov processes
نویسندگان
چکیده
Abstract Matryoshka dolls, the traditional Russian nesting figurines, are known worldwide for each doll’s encapsulation of a sequence smaller dolls. In this paper, we exploit structure new nested matrices call matryoshkan in order to compute moments one-dimensional polynomial processes, large class Markov processes. We characterize salient properties that allow us these closed form at specific time without computing entire path process. This simplifies computation process significantly. Through our method, derive explicit expressions both transient and steady-state demonstrate applicability method through examples such as shot noise growth–collapse ephemerally self-exciting affine stochastic differential equations from finance literature. also show can Hawkes process, which finding closed-form moment has been an open problem since their introduction 1971. general, techniques be used any infinitesimal generator arbitrary is itself equal or lower order.
منابع مشابه
analysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولMoments of MGOU processes and positive semidefinite matrix processes
Moment conditions for multivariate generalized Ornstein-Uhlenbeck (MGOU) processes are derived and first and second moment are given in terms of the driving Lévy processes. In the second part of the paper a class of multivariate, positive semidefinite processes of MGOU–type is developed and suggested for use as squared volatility process in multivariate financial modelling.
متن کاملAccelerated decomposition techniques for large discounted Markov decision processes
Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...
متن کاملON THE INFINITE ORDER MARKOV PROCESSES
The notion of infinite order Markov process is introduced and the Markov property of the flow of information is established.
متن کاملOn the Properties of Moments of Matrix Exponential Distributions and Matrix Exponential Processes
In this paper we provide properties of moments of matrix exponential distributions and joint moments of matrix exponential processes. Based on the provided properties, an algorithm is presented to compute any finite dimensional moments of these processes based on a set of required (low order) moments. This algorithm does not require the computation of any representation of the given process. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Probability
سال: 2022
ISSN: ['1475-6064', '0001-8678']
DOI: https://doi.org/10.1017/apr.2022.8