$\mathcal{H}_2$-Optimal Model Reduction Using Projected Nonlinear Least Squares
نویسندگان
چکیده
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملLocal Nonlinear Least Squares : Using Parametric Information
We introduce a new nonparametric regression estimator that uses prior information on regression shape in the form of a parametric model. In eeect, we nonparametrically encompass the parametric model. We obtain estimates of the regression function and its derivatives along with local parameter estimates that can be interpreted from within the parametric model. We establish the uniform consistenc...
متن کاملNonlinear Least-squares Estimation
The paper uses empirical process techniques to study the asymptotics of the least-squares estimator for the fitting of a nonlinear regression function. By combining and extending ideas of Wu and Van de Geer, it establishes new consistency and central limit theorems that hold under only second moment assumptions on the errors. An application to a delicate example of Wu’s illustrates the use of t...
متن کاملsuperlinearly convergent exact penalty projected structured hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
we present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step q-superlinear convergence. the approach is based on an adaptive structured scheme due to mahdavi-amiri and bartels of the exact penalty method of coleman and conn for nonlinearly constrained optimization problems. the structured adaptation also makes use of the ideas of n...
متن کاملNonlinear least squares and regularization
I present and discuss some general ideas about iterative nonlinear output least-squares methods. The main result is that, if it is possible to do forward modeling on a physical problem in a way that permits the output (i.e., the predicted values of some physical parameter that could be measured) and the rst derivative of the same output with respect to the model parameters (whatever they may be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Scientific Computing
سال: 2020
ISSN: 1064-8275,1095-7197
DOI: 10.1137/19m1247863