Markov's inequality for typically real polynomials

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Effective Lojasiewicz Inequality for Real Polynomials

Example 1. Set f1 = x d 1 and fi = xi−1 − x d i for i = 2, . . . , n. Then Φ(x) := maxi{|fi(x)|} > 0 for x 6= 0. Let p(t) = (t d , t n−2 , . . . , t). Then limt→0 ||p(t)||/|t| = 1 and Φ(p(t)) = t d . Thus the Lojasiewicz exponent is ≥ d. (In fact it equals d.) This works both over R and C. In the real case set F = ∑ f 2 i . Then degF = 2d, F has an isolated real zero at the origin and the Lojas...

متن کامل

Typically Real Harmonic Functions

We consider a class T O H of typically real harmonic functions on the unit disk that contains the class of normalized analytic and typically real functions. We also obtain some partial results about the region of univalence for this class.

متن کامل

An inequality for chromatic polynomials

Woodall, D.R., An inequality for chromatic polynomials, Discrete Mathematics 101 (1992) 327-331. It is proved that if P(G, t) is the chromatic polynomial of a simple graph G with II vertices, m edges, c components and b blocks, and if t S 1, then IP(G, t)/ 2 1t’(t l)hl(l + ys + ys2+ . + yF’ +spl), where y = m n + c, p = n c b and s = 1 t. Equality holds for several classes of graphs with few ci...

متن کامل

An inequality for Tutte polynomials

Let G be a graph without loops or bridges and a, b be positive real numbers with b ≥ a(a + 2). We show that the Tutte polynomial of G satisfies the inequality TG(b, 0)TG(0, b) ≥ TG(a, a). Our result was inspired by a conjecture of Merino and Welsh that TG(1, 1) ≤ max{TG(2, 0), TG(0, 2)}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1990

ISSN: 0022-247X

DOI: 10.1016/0022-247x(90)90309-4