Markov's inequality for typically real polynomials
نویسندگان
چکیده
منابع مشابه
An Effective Lojasiewicz Inequality for Real Polynomials
Example 1. Set f1 = x d 1 and fi = xi−1 − x d i for i = 2, . . . , n. Then Φ(x) := maxi{|fi(x)|} > 0 for x 6= 0. Let p(t) = (t d , t n−2 , . . . , t). Then limt→0 ||p(t)||/|t| = 1 and Φ(p(t)) = t d . Thus the Lojasiewicz exponent is ≥ d. (In fact it equals d.) This works both over R and C. In the real case set F = ∑ f 2 i . Then degF = 2d, F has an isolated real zero at the origin and the Lojas...
متن کاملTypically Real Harmonic Functions
We consider a class T O H of typically real harmonic functions on the unit disk that contains the class of normalized analytic and typically real functions. We also obtain some partial results about the region of univalence for this class.
متن کاملAn inequality for chromatic polynomials
Woodall, D.R., An inequality for chromatic polynomials, Discrete Mathematics 101 (1992) 327-331. It is proved that if P(G, t) is the chromatic polynomial of a simple graph G with II vertices, m edges, c components and b blocks, and if t S 1, then IP(G, t)/ 2 1t’(t l)hl(l + ys + ys2+ . + yF’ +spl), where y = m n + c, p = n c b and s = 1 t. Equality holds for several classes of graphs with few ci...
متن کاملAn inequality for Tutte polynomials
Let G be a graph without loops or bridges and a, b be positive real numbers with b ≥ a(a + 2). We show that the Tutte polynomial of G satisfies the inequality TG(b, 0)TG(0, b) ≥ TG(a, a). Our result was inspired by a conjecture of Merino and Welsh that TG(1, 1) ≤ max{TG(2, 0), TG(0, 2)}.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1990
ISSN: 0022-247X
DOI: 10.1016/0022-247x(90)90309-4