Markov chain approximation of one-dimensional sticky diffusions

نویسندگان

چکیده

Abstract We develop a continuous-time Markov chain (CTMC) approximation of one-dimensional diffusions with sticky boundary or interior points. Approximate solutions to the action Feynman–Kac operator associated diffusion and first passage probabilities are obtained using matrix exponentials. show how compute exponentials efficiently prove that carefully designed scheme achieves second-order convergence. also propose based on CTMC for simulation diffusions, which Euler may completely fail. The efficiency our method its advantages over alternative approaches illustrated in context bond pricing short-rate model low-interest environment option under geometric Brownian motion price point.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the approximation of one Markov chain by another

Motivated by applications in Markov chain Monte Carlo, we discuss what it means for one Markov chain to be an approximation to another. Specifically included in that discussion are situations in which a Markov chain with continuous state space is approximated by one with finite state space. A simple sufficient condition for close approximation is derived, which indicates the existence of three ...

متن کامل

Convergence Rates of Markov Chain Approximation Methods for Controlled Regime-Switching Diffusions with Stopping

This work summarizes our recent work on rates of convergence of Markov chain approximation methods for controlled switching diffusions, in which both continuous dynamics and discrete events coexist. The discrete events are formulated by continuous-time Markov chains to delineate random environment and other random factors that cannot be represented by diffusion processes. The cost function is o...

متن کامل

Convergence rates of Markov chain approximation methods for controlled diffusions with stopping

This work is concerned with rates of convergence of numerical methods using Markov chain approximation for controlled diffusions with stopping (the first exit time from a bounded region). In lieu of considering the associated finite difference schemes for Hamilton-Jacobi-Bellman (HJB) equations, a purely probabilistic approach is used. There is an added difficulty due to the boundary condition,...

متن کامل

analysis of ruin probability for insurance companies using markov chain

در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...

15 صفحه اول

Wasserstein Decay of One Dimensional Jump-diffusions

This work is devoted to the Lipschitz contraction and the long time behavior of certain Markov processes. These processes diffuse and jump. They can represent some natural phenomena like size of cell or data transmission over the Internet. Using a Feynman-Kac semigroup, we prove a bound in Wasserstein metric. This bound is explicit and optimal in the sense of Wasserstein curvature. This notion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Applied Probability

سال: 2021

ISSN: ['1475-6064', '0001-8678']

DOI: https://doi.org/10.1017/apr.2020.65