Marker-assisted selection using ridge regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimating process capability indices using ridge regression

Process capability indices show the ability of a process to produce products according to the pre-specified requirements. Since final quality characteristics of a product are usually interrelated to its previous amounts in earlier workstations, one need to model and consider the relationship among them to assess the process ca-pability properly. Hence, conducting process capability analysis in ...

متن کامل

Rice Variety Improvement Using Marker-Assisted Selection

Molecular marker-assisted selection (MAS) is currently being employed in two areas of rice breeding at the University of Arkansas Rice Research and Extension Center (RREC) in Stuttgart. Presently the objective of the program is to accelerate the development of rice cultivars with improved cooking quality and rice blast disease resistance using two well-characterized molecular markers. A co-domi...

متن کامل

Selection of Model Selection Criteria for Multivariate Ridge Regression

In the present study, we consider the selection of model selection criteria for multivariate ridge regression. There are several model selection criteria for selecting the ridge parameter in multivariate ridge regression, e.g., the Cp criterion and the modified Cp (MCp) criterion. We propose the generalized Cp (GCp) criterion, which includes Cp andMCp criteria as special cases. The GCp criterio...

متن کامل

Color Constancy Using Ridge Regression

Although there exist a number of single color constancy algorithms, none of them can be considered universal. Consequently, how to select and combine existing single algorithms are two important research directions in the field of color constancy. In this paper we use ridge regression, a simple yet effective machine learning approach, to select and combine existing color constancy algorithms. T...

متن کامل

Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions

BACKGROUND Genomic selection (GS) is emerging as an efficient and cost-effective method for estimating breeding values using molecular markers distributed over the entire genome. In essence, it involves estimating the simultaneous effects of all genes or chromosomal segments and combining the estimates to predict the total genomic breeding value (GEBV). Accurate prediction of GEBVs is a central...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Genetical Research

سال: 2000

ISSN: 0016-6723,1469-5073

DOI: 10.1017/s0016672399004462