Marginal Likelihood Based Model Comparison in Fuzzy Bayesian Learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Marginal likelihood based model comparison in Fuzzy Bayesian Learning

In a recent paper [1] we introduced the Fuzzy Bayesian Learning (FBL) paradigm where expert opinions can be encoded in the form of fuzzy rule bases and the hyper-parameters of the fuzzy sets can be learned from data using a Bayesian approach. The present paper extends this work for selecting the most appropriate rule base among a set of competing alternatives, which best explains the data, by c...

متن کامل

A Comparison of Marginal Likelihood Computation Methods

In a Bayesian analysis, different models can be compared on the basis of the expected or marginal likelihood they attain. Many methods have been devised to compute the marginal likelihood, but simplicity is not the strongest point of most methods. At the same time, the precision of methods is often questionable. In this paper several methods are presented in a common framework. The explanation ...

متن کامل

Classifier Learning with Supervised Marginal Likelihood

It has been argued that in supervised classification tasks it may be more sensible to perform model selection with respect to a more focused model selection score, like the supervised (conditional) marginal likelihood, than with respect to the standard unsupervised marginal likelihood criterion. However, for most Bayesian network models, computing the supervised marginal likelihood score takes ...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

DisTriB: Distributed Trust Management Model Based on Gossip Learning and Bayesian Networks in Collaborative Computing Systems

The interactions among peers in Peer-to-Peer systems as a distributed collaborative system are based on asynchronous and unreliable communications. Trust is an essential and facilitating component in these interactions specially in such uncertain environments. Various attacks are possible due to large-scale nature and openness of these systems that affects the trust. Peers has not enough inform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Emerging Topics in Computational Intelligence

سال: 2020

ISSN: 2471-285X

DOI: 10.1109/tetci.2018.2868253