Mapping Structure-Composition-Property Relationships in V- and Fe-Doped LiMnPO4 Cathodes for Lithium-Ion Batteries
نویسندگان
چکیده
منابع مشابه
Mapping Structure-Composition-Property Relationships in V- and Fe-Doped LiMnPO4 Cathodes for Lithium-Ion Batteries.
A series of LiMn1-x-yFexVyPO4 (LMFVP) nanomaterials have been synthesized using a pilot-scale continuous hydrothermal synthesis process (CHFS) and evaluated as high voltage cathodes in Li-ion batteries at a production rate of 0.25 kg h-1. The rapid synthesis and screening approach has allowed the specific capacity of the high Mn content olivines to be optimized, particularly at high discharge r...
متن کاملDoped LiFePO4 Cathodes for High Power Density Lithium Ion Batteries
Olivine LiFePO4 has received much attention recently as a promising storage compound for cathodes in lithium ion batteries. It has an energy density similar to that of LiCoO 2, the current industry standard for cathode materials in lithium ion batteries, but with a lower raw materials cost and an increased level of safety. An inherent limitation of LiFePO4 acknowledged by researchers studying t...
متن کاملLi2MnSiO4 Nanostructured Cathodes for Rechargeable Lithium-Ion Batteries
Rechargeable lithium-ion battery technology dominates the portable electronics market following the rapid growth in demand since the introduction of the first, commercial lithium-ion battery by Sony in 1990 [1]. Motivated by concerns for global warming and environmental degradation, researchers have focused on extending the use of rechargeable lithium-ion batteries to large-scale applications. ...
متن کاملFacile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries.
Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a speci...
متن کاملIn situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries.
Highly stable sulfur/microporous carbon (S/MC) composites are prepared by vacuum infusion of sulfur vapor into microporous carbon at 600 °C, and lithium sulfide/microporous carbon (Li2S/MC) cathodes are fabricated via a novel and facile in situ lithiation strategy, i.e., spraying commercial stabilized lithium metal powder (SLMP) onto a prepared S/MC film cathode prior to the routine compressing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Combinatorial Science
سال: 2016
ISSN: 2156-8952,2156-8944
DOI: 10.1021/acscombsci.6b00035