Many-body effects, orbital mixing, and cyclotron resonance in bilayer graphene
نویسندگان
چکیده
منابع مشابه
Cyclotron resonance in bilayer graphene.
We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B=18 T, we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies are roughly linear in B between the lowest Landau levels, whereas they follow square root[B] for the higher transitions. This highly unusual behavior ...
متن کاملOrbital-specific Tunability of Many-Body Effects in Bilayer Graphene by Gate Bias and Metal Contact
Graphene, a 2D crystal bonded by π and σ orbitals, possesses excellent electronic properties that are promising for next-generation optoelectronic device applications. For these a precise understanding of quasiparticle behaviour near the Dirac point (DP) is indispensable because the vanishing density of states (DOS) near the DP enhances many-body effects, such as excitonic effects and the Ander...
متن کاملIntra-Landau-level cyclotron resonance in bilayer graphene.
Interaction driven integer quantum-Hall effects are anticipated in graphene bilayers because of the near degeneracy of the eight Landau levels which appear near the neutral system Fermi level. We predict that an intra-Landau-level cyclotron resonance signal will appear at some odd-integer filling factors, accompanied by collective modes which are nearly gapless and have approximate k3/2 dispers...
متن کاملMany-body exchange-correlation effects in graphene
We calculate, within the leading-order dynamical-screening approximation, the electron self-energy and spectral function at zero temperature for extrinsic (or gated/doped) graphene. We also calculate hot carrier inelastic scattering due to electron–electron interactions in graphene. We obtain the inelastic quasiparticle lifetimes and associated mean free paths from the calculated self-energy. T...
متن کاملBand structure and many body effects in graphene
We have determined the electronic bandstructure of clean and potassium-doped single layer graphene, and fitted the graphene π bands to a oneand three-near-neighbor tight binding model. We characterized the quasiparticle dynamics using angle resolved photoemission spectroscopy. The dynamics reflect the interaction between holes and collective excitations, namely plasmons, phonons, and electron-h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2020
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.101.195429