Manifolds with small Dirac eigenvalues are nilmanifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifolds with small Dirac eigenvalues are nilmanifolds

Consider the class of n-dimensional Riemannian spin manifolds with bounded sectional curvatures and diameter, and almost non-negative scalar curvature. Let r = 1 if n = 2, 3 and r = 2 + 1 if n ≥ 4. We show that if the square of the Dirac operator on such a manifold has r small eigenvalues, then the manifold is diffeomorphic to a nilmanifold and has trivial spin structure. Equivalently, if M is ...

متن کامل

Eigenvalues of the Dirac Operator on Manifolds with Boundary

Under standard local boundary conditions or certain global APS boundary conditions, we get lower bounds for the eigenvalues of the Dirac operator on compact spin manifolds with boundary. For the local boundary conditions, limiting cases are characterized by the existence of real Killing spinors and the minimality of the boundary.

متن کامل

Fun with Dirac Eigenvalues

Amongst the lattice gauge community it has recently become quite popular to study the distributions of eigenvalues of the Dirac operator in the presence of the background gauge fields generated in simulations. There are a variety of motivations for this. First, in a classic work, Banks and Casher1 related the density of small Dirac eigenvalues to spontaneous chiral symmetry breaking. Second, la...

متن کامل

Dirac Eigenvalues for Generic Metrics on Three-manifolds

We show that for generic Riemannian metrics on a closed spin manifold of dimension three the Dirac operator has only simple eigenvalues.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2006

ISSN: 0232-704X,1572-9060

DOI: 10.1007/s10455-006-9048-2