Manifolds: Hausdorffness versus homogeneity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mazurkiewicz Manifolds and Homogeneity

It is proved that no region of a homogeneous locally compact, locally connected metric space can be cut by an Fσ-subset of a “smaller” dimension. The result applies to different finite or infinite topological dimensions of metrizable spaces. The classical Hurewicz-Menger-Tumarkin theorem in dimension theory says that connected topological n-manifolds (with or without boundary) are Cantor manifo...

متن کامل

On Different Notions of Homogeneity for Cr-manifolds

We show that various notions of local homogeneity for CR-manifolds are equivalent. In particular, if germs at any two points of a CR-manifold are CR-equivalent, there exists a transitive local Lie group action by CR-automorphisms near every point.

متن کامل

The curvature homogeneity bound for four-dimensional Lorentzian manifolds

We prove that a four-dimensional Lorentzian manifold that is curvature homogeneous of order 3, or CH3 for short, is necessarily locally homogeneous. We also exhibit and classify four-dimensional Lorentzian, CH2 manifolds that are not homogeneous. Our results imply that the Singer index for four-dimensional Lorentzian manifolds is greater or equal to 2. PACS numbers: 04.20, 02.40 AMS classificat...

متن کامل

Curvature homogeneity of type (1, 3) in pseudo-Riemannian manifolds

We construct two new families of pseudo-Riemannian manifolds which are curvature homegeneous of type (1, 3). The first family given has signature (2k, 2k + 1) and is curvature homogeneous of type (1, 3) but not curvature homogeneous. The second family given has signature (1, 2) and is curvature homogeneous of type (1, 3) of all orders but not locally homogeneous, showing there is no finite Sing...

متن کامل

The curvature homogeneity bound for Lorentzian four-manifolds

We prove that a four-dimensional Lorentzian manifold that is curvature homogeneous of order 3, or CH3 for short, is necessarily locally homogeneous. We also exhibit and classify four-dimensional Lorentzian, CH2 manifolds that are not homogeneous. The resulting metrics belong to the class of null electromagnetic radiation, type N solutions on an anti-de Sitter background. These findings prove th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-07-09100-9