Manifold matching: Joint optimization of fidelity and commensurability
نویسندگان
چکیده
منابع مشابه
Manifold Matching: Joint Optimization of Fidelity and Commensurability
Fusion and inference from multiple and massive disparate data sources – the requirement for our most challenging data analysis problems and the goal of our most ambitious statistical pattern recognition methodologies – has many and varied aspects which are currently the target of intense research and development. One aspect of the overall challenge is manifold matching – identifying embeddings ...
متن کاملEfficiency investigation of manifold matching for text document classification
Manifold matching works to identify embeddings of multiple disparate data spaces into the same low-dimensional space, where joint inference can be pursued. It is an enabling methodology for fusion and inference from multiple and massive disparate data sources. In this paper three methods of manifold matching are considered: PoM, which stands for Multidimensional Scaling (MDS) composed with Proc...
متن کاملJoint optimization of fitting & matching in multi-view reconstruction
Many standard approaches to geometric model fitting are based on prematched image features. Typically, such pre-matching uses only feature appearances (e.g. SIFT) and a large number of non-unique features must be discarded in order to control the false positive rate. In contrast, we solve feature matching and multi-model fitting problems in a joint optimization framework. This paper proposes se...
متن کاملJoint optimization of manifold learning and sparse representations for face and gesture analysis
Face and gesture understanding algorithms are powerful enablers in intelligent vision systems for surveillance, security, entertainment, and smart spaces. In the future, complex networks of sensors and cameras may disperse directions to lost tourists, perform directory lookups in the office lobby, or contact the proper authorities in case of an emergency. To be effective, these systems will nee...
متن کاملContinuous-fidelity Bayesian Optimization
While Bayesian optimization (BO) has achieved great success in optimizing expensive-to-evaluate black-box functions, especially tuning hyperparameters of neural networks, methods such as random search (Li et al., 2016) and multifidelity BO (e.g. Klein et al. (2017)) that exploit cheap approximations, e.g. training on a smaller training data or with fewer iterations, can outperform standard BO a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Brazilian Journal of Probability and Statistics
سال: 2013
ISSN: 0103-0752
DOI: 10.1214/12-bjps188