منابع مشابه
Major facilitator superfamily.
The major facilitator superfamily (MFS) is one of the two largest families of membrane transporters found on Earth. It is present ubiquitously in bacteria, archaea, and eukarya and includes members that can function by solute uniport, solute/cation symport, solute/cation antiport and/or solute/solute antiport with inwardly and/or outwardly directed polarity. All homologous MFS protein sequences...
متن کاملIns and outs of major facilitator superfamily antiporters.
The major facilitator superfamily (MFS) represents the largest group of secondary active membrane transporters, and its members transport a diverse range of substrates. Recent work shows that MFS antiporters, and perhaps all members of the MFS, share the same three-dimensional structure, consisting of two domains that surround a substrate translocation pore. The advent of crystal structures of ...
متن کاملProkaryote multidrug efflux proteins of the major facilitator superfamily: amplified expression, purification and characterisation.
In bacterial genomes 3-12% of open reading frames are predicted to encode membrane transport proteins. These proteins can be vital for antibiotic efflux, protein/ toxin secretion, cell nutrition, environmental sensing, ATP synthesis, and other functions. Some, such as the multidrug efflux proteins, are potential targets for the development of new antibacterials and also for applications in biot...
متن کاملCharacterization of a major facilitator superfamily (MFS) tripartite efflux pump EmrCABsm from Stenotrophomonas maltophilia.
OBJECTIVES To characterize the emrRCABsm operon of Stenotrophomonas maltophilia. METHODS The presence of the emrRCABsm operon was verified by RT-PCR. The regulatory role of EmrRsm was investigated by ΔemrRsm mutant construction and promoter transcriptional fusion assay. A susceptibility test was employed to assess the substrate spectrum of the EmrCABsm efflux pump. The requirement for each co...
متن کاملA novel major facilitator superfamily protein at the tonoplast influences zinc tolerance and accumulation in Arabidopsis.
Zinc (Zn) is an essential micronutrient required by all cells but is toxic in excess. We have identified three allelic Zn-sensitive mutants of Arabidopsis (Arabidopsis thaliana). The gene, designated ZINC-INDUCED FACILITATOR1 (ZIF1), encodes a member of the major facilitator superfamily of membrane proteins, which are found in all organisms and transport a wide range of small, organic molecules...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microbiology and Molecular Biology Reviews
سال: 1998
ISSN: 1092-2172,1098-5557
DOI: 10.1128/mmbr.62.1.1-34.1998