Magnetotelluric Noise Attenuation Using a Deep Residual Shrinkage Network

نویسندگان

چکیده

Magnetotelluric (MT) surveying is an essential geophysical method for mapping subsurface electrical conductivity structures. The MT signal susceptible to cultural noise, and the intensity of noise growing with urbanization. Cultural increasingly difficult be removed by conventional data processing methods. We propose a novel time-series editing based on deep residual shrinkage network (DRSN) address this issue. Firstly, are divided into small segments form dataset system. Secondly, we use system train denoising model. Finally, trained model used denoising. experiments using synthetic actual field collected in Qinghai Luzong, China, show that DRSN can effectively remove has better adaptability efficiency than traditional

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concept Detection on Medical Images using Deep Residual Learning Network

Medical images are often used in clinical diagnosis. However, interpreting the insights gained from them is often a time-consuming task even for experts. For this reason, there is a need for methods that can automatically approximate the mapping from medical images to condensed textual descriptions. For identifying the presence of relevant biomedical concepts in medical images for the ImageCLEF...

متن کامل

Pervasive white and colored noise removing from magnetotelluric time series

Magnetotellurics is an exploration method which is based on measurement of natural electric and magnetic fields of the Earth and is increasingly used in geological applications, petroleum industry, geothermal sources detection and crust and lithosphere studies. In this work, discrete wavelet transform of magnetotelluric signals was performed. Discrete wavelet transform decomposes signals into c...

متن کامل

DARN: a Deep Adversial Residual Network for Intrinsic Image Decomposition

We present a new deep supervised learning method for intrinsic decomposition of a single image into its albedo and shading components. Our contributions are based on a new fully convolutional neural network that estimates absolute albedo and shading jointly. As opposed to classical intrinsic image decomposition work, it is fully data-driven, hence does not require any physical priors like shadi...

متن کامل

A Deep Residual Inception Network for HEp-2 Cell Classification

Indirect-immunofluorescence (IIF) of Human Epithelial-2 (HEp-2) cells is a commonly-used method for the diagnosis of autoimmune diseases. Traditional approach relies on specialists to observe HEp-2 slides via the fluorescence microscope, which suffers from a number of shortcomings like being subjective and labor intensive. In this paper, we proposed a hybrid deep learning network combining the ...

متن کامل

Early Start Intention Detection of Cyclists Using Motion History Images and a Deep Residual Network

In this article, we present a novel approach to detect starting motions of cyclists in real world traffic scenarios based on Motion History Images (MHIs). The method uses a deep Convolutional Neural Network (CNN) with a residual network architecture (ResNet), which is commonly used in image classification and detection tasks. By combining MHIs with a ResNet classifier and performing a frame by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Minerals

سال: 2022

ISSN: ['2075-163X']

DOI: https://doi.org/10.3390/min12091086