Machine learning for single-cell genomics data analysis
نویسندگان
چکیده
منابع مشابه
Machine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملMachine Learning Methods for Microarray Data Analysis
As members of the Dissertation Committee, we certify that we have read the dis-sertation prepared by Prasad Amaresh Gabbur entitled Machine Learning Methods for Microarray Data Analysis and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Final approval and acceptance of this dissertation is contingent upon the candidate's submissi...
متن کاملUsing Machine Learning for Exploratory Data Analysis
This tutorial will introduce attendees to fundamental concepts in the clustering and dimensionality reduction fields of unsupervised machine learning. Attendees will learn about the assumptions algorithms make and how those assumptions can cause the algorithms to be more or less suited to particular datasets. Hands-on interaction with machine learning algorithms on real and synthetic data are a...
متن کاملSingle-Cell Analysis in Cancer Genomics.
Genetic changes and environmental differences result in cellular heterogeneity among cancer cells within the same tumor, thereby complicating treatment outcomes. Recent advances in single-cell technologies have opened new avenues to characterize the intra-tumor cellular heterogeneity, identify rare cell types, measure mutation rates, and, ultimately, guide diagnosis and treatment. In this paper...
متن کاملSingle-Cell Genomics for Virology
Single-cell sequencing technologies, i.e., single cell analysis followed by deep sequencing investigate cellular heterogeneity in many biological settings. It was only in the past year that single-cell sequencing analyses has been applied in the field of virology, providing new ways to explore viral diversity and cell response to viral infection, which are summarized in the present review.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Opinion in Systems Biology
سال: 2021
ISSN: 2452-3100
DOI: 10.1016/j.coisb.2021.04.006