Machine learning enhanced optimisation of crash box design for crashworthiness analysis
نویسندگان
چکیده
Abstract The primary goal of the current study is to optimise crash box designs for automobiles. Machine learning (ML) techniques are used build an intelligent and reliable ML framework. With help this framework, design can be optimised crashworthiness analysis. optimisation resource‐intensive due its intricate geometric design, use a variety materials, extensive dynamic simulations determine ideal structural parameters through simulations. A reinforcement learning‐based (RL) optimization technique developed reason. built with nonlinear first‐order shear deformation shell elements provide necessary simulation data, elastoplastic material model impact process. RL agents tuned using finite element (FE) synthetic data generated by generative adversarial network (GAN) select optimal vehicle To estimate correct parameter required fulfil specified metrics, agent learns optimises automatically. This method effective in terms resources could helpful early stages development.
منابع مشابه
Numerical Investigation of Aluminum Honeycomb Filled High Strength Steel Crash Box for the Effect of Honeycomb Physical Parameters on Crashworthiness Constant
Fillers can be employed as reinforcement in the design of automobile crash boxes to improve its performance in terms of energy absorption, expected crushing fashion and initial peak force magnitude. The current research focuses on the investigation of crashworthiness of the high-strength steel (HSS) columns filled with reinforced aluminium honeycomb fillers. The crashworthiness of HSS steel cra...
متن کاملNumerical Investigation of Aluminum Honey Comb Filled High Strength Steel Crash Box for the Effect of Honey Comb Physical Parameters on Crashworthiness Constant
Fillers can be employed as reinforcement in the design of automobile crash boxes to improve its performance in terms of energy absorption, expected crushing fashion and initial peak force magnitude. The current research focuses on the investigation of crashworthiness of the high-strength steel (HSS) columns filled with reinforced aluminium honeycomb fillers. The crashworthiness of HSS steel cra...
متن کاملNew Optimisation Methods for Machine Learning
In this work we introduce several new optimisation methods for problems in machine learning. Our algorithms broadly fall into two categories: optimisation of finite sums and of graph structured objectives. The finite sum problem is simply the minimisation of objective functions that are naturally expressed as a summation over a large number of terms, where each term has a similar or identical w...
متن کاملTransBooster: Black Box Optimisation of Machine Translation Systems
vi Acknowledgements vii
متن کاملanalysis of ruin probability for insurance companies using markov chain
در این پایان نامه نشان داده ایم که چگونه می توان مدل ریسک بیمه ای اسپیرر اندرسون را به کمک زنجیره های مارکوف تعریف کرد. سپس به کمک روش های آنالیز ماتریسی احتمال برشکستگی ، میزان مازاد در هنگام برشکستگی و میزان کسری بودجه در زمان وقوع برشکستگی را محاسبه کرده ایم. هدف ما در این پایان نامه بسیار محاسباتی و کاربردی تر از روش های است که در گذشته برای محاسبه این احتمال ارائه شده است. در ابتدا ما نشا...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings in applied mathematics & mechanics
سال: 2023
ISSN: ['1617-7061']
DOI: https://doi.org/10.1002/pamm.202300145