Machine learning-based evaluation of dynamic thermal-tempering performance and thermal diversity for 107 Cambridge courtyards

نویسندگان

چکیده

The dynamic thermal conditions profoundly impact on the quality of physical, cultural, and social experiences in courtyard spaces. This research aims to identify microclimatic dissimilarities between courtyards terms tempering seasonal–diurnal extremes enriching ground-level textures. methodology included field measurements summer-2021 winter-2022 Cambridge, UK; simulations 107 ENVI-met model validations; machine learning-driven clustering using Super Organising Maps (SuperSOM). results indicate that diurnal range spatial-UTCI mean summer (DTR(M)<24?C) is double winter (DTR(M)<12?C); meanwhile maximum deviation three times as significant (?>3?Cat 7:00 BST versus ?>1?Cat 12:00 GMT). SuperSOM analysis was performed K-means hierarchical agglomerative partition all into seven subclusters its graph-lattice structure. Clusters Km_I, Hac_I, Hac_IV feature a positive synergy thermal-tempering thermal-enriching potentials. In contrast, other four clusters exhibit conflicting scenarios during day night across two seasons analysed. These data-driven outcomes enabled us optimise spatial landscape strategies for designing retrofitting microclimates, contributing current discussions climate-responsive sensation-inclusive design historical urban contexts.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

Thermal conductivity of Water-based nanofluids: Prediction and comparison of models using machine learning

Statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. This paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. The thermal conductivity of nanofluids increases with the volume fraction and temperature. Machine learni...

متن کامل

thermal conductivity of water-based nanofluids: prediction and comparison of models using machine learning

statistical methods, and especially machine learning, have been increasingly used in nanofluid modeling. this paper presents some of the interesting and applicable methods for thermal conductivity prediction and compares them with each other according to results and errors that are defined. the thermal conductivity of nanofluids increases with the volume fraction and temperature. machine learni...

متن کامل

diagnostic and developmental potentials of dynamic assessment for writing skill

این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...

15 صفحه اول

Dynamic Thermal Management for High-Performance Microprocessors

With the increasing clock rate and transistor count of today’s microprocessors, power dissipation is becoming a critical component of system design complexity. Thermal and power-delivery issues are becoming especially critical for high-performance computing systems. In this work, we investigate dynamic thermal management as a technique to control CPU power dissipation. With the increasing usage...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sustainable Cities and Society

سال: 2023

ISSN: ['2210-6707', '2210-6715']

DOI: https://doi.org/10.1016/j.scs.2022.104275