Machine Learning and Brain Computer Interfacing
نویسندگان
چکیده
منابع مشابه
Machine Learning and Applications for Brain-Computer Interfacing
This paper discusses machine learning methods and their application to Brain-Computer Interfacing. A particular focus is placed on linear classification methods which can be applied in the BCI context. Finally, we provide an overview on the Berlin-Brain Computer Interface (BBCI).
متن کاملBrain-computer Interfacing
Recently, CNN reported on the future of brain-computer interfaces (BCIs) [1]. Brain-computer interfaces are devices that process a user’s brain signals to allow direct communication and interaction with the environment. BCIs bypass the normal neuromuscular output pathways and rely on digital signal processing and machine learning to translate brain signals to action (Figure 1). Historically, BC...
متن کاملBrain-Computer Interfacing and Games
Recently research into Brain-Computer Interfacing (BCI) applications for healthy users, such as games, has been initiated. But why would a healthy person use a still-unproven technology such as BCI for game interaction? BCI provides a combination of information and features that no other input modality can offer. But for general acceptance of this technology, usability and user experience will ...
متن کاملBrain-Computer Interfacing for Games
Brain-computer interfaces (BCI) come with a lot of issues, such as delays, bad recognition, long training times, and cumbersome hardware. Gamers are a large potential target group for this new interaction modality, but why would healthy subjects want to use it? BCI provides a combination of information and features that no other input modality can offer. Current research is mostly still focusin...
متن کاملIntention Concepts and Brain-Machine Interfacing
Intentions, including their temporal properties and semantic content, are receiving increased attention, and neuroscientific studies in humans vary with respect to the topography of intention-related neural responses. This may reflect the fact that the kind of intentions investigated in one study may not be exactly the same kind investigated in the other. Fine-grained intention taxonomies devel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Computational Neuroscience
سال: 2015
ISSN: 1662-5188
DOI: 10.3389/conf.fncom.2015.56.00006