Lq‐valued Burkholder–Rosenthal inequalities and sharp estimates for stochastic integrals
نویسندگان
چکیده
منابع مشابه
General Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملSharp maximal function estimates for multilinear singular integrals
A new proof of a weighted norm inequality for multilinear singular integrals of Calderón-Zygmund type is presented through a more general estimate involving a sharp maximal function. An application is given to the study of certain multilinear commutators.
متن کاملConvex comparison inequalities for non-Markovian stochastic integrals∗
E[φ(X∗)] ≤ E[φ(X)], (1.1) ∗The third author acknowledges the financial support from NTU Start-Up Grant M58110087. †UMR 6625 CNRS Institut de Recherche Mathématique de Rennes (IRMAR), Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France. ‡Laboratoire Analyse, Géométrie & Applications, UMR 7539, Institut Galilée, Université Paris 13, 99 avenue J.B. Clément, 93430 Villetaneuse, F...
متن کاملOn Generalizations of Hadamard Inequalities for Fractional Integrals
Fej'{e}r Hadamard inequality is generalization of Hadamard inequality. In this paper we prove certain Fej'{e}r Hadamard inequalities for $k$-fractional integrals. We deduce Fej'{e}r Hadamard-type inequalities for Riemann-Liouville fractional integrals. Also as special case Hadamard inequalities for $k$-fractional as well as fractional integrals are given.
متن کاملSharp tail estimates for perturbed stochastic volatility models
Sharp tail asymptotics are established for generalized Heston and Stein-Stein stochastic volatility models, with a perturbed drift for the volatility process. This builds on the work of Gulisashvili&Stein[Gul10],[GS10][GS10I] and Friz et al.[FGGS10], [DFJV11].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the London Mathematical Society
سال: 2019
ISSN: 0024-6115,1460-244X
DOI: 10.1112/plms.12277