Lozenge Tilings with Free Boundaries

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distances on Lozenge Tilings

In this paper, a structural property of the set of lozenge tilings of a 2n-gon is highlighted. We introduce a simple combinatorial value called Hamming-distance, which is a lower bound for the flipdistance (i.e. the number of necessary local transformations involving three lozenges) between two given tilings. It is here proven that, for n ≤ 4, the flip-distance between two tilings is equal to t...

متن کامل

Signed Lozenge Tilings

It is well-known that plane partitions, lozenge tilings of a hexagon, perfect matchings on a honeycomb graph, and families of non-intersecting lattice paths in a hexagon are all in bijection. In this work we consider regions that are more general than hexagons. They are obtained by further removing upward-pointing triangles. We call the resulting shapes triangular regions. We establish signed v...

متن کامل

Lozenge Tilings and Hurwitz Numbers

We give a new proof of the fact that, near a turning point of the frozen boundary, the vertical tiles in a uniformly random lozenge tiling of a large sawtooth domain are distributed like the eigenvalues of a GUE random matrix. Our argument uses none of the standard tools of integrable probability. In their place, it uses a combinatorial interpretation of the HarishChandra/Itzykson-Zuber integra...

متن کامل

An overview of domino and lozenge tilings

We consider tilings of quadriculated regions by dominoes and of triangulated regions by lozenges. We present an overview of results concerning tileability, enumeration and the structure of the space of tilings.

متن کامل

Enumeration of Lozenge Tilings of Punctured Hexagons

We present a combinatorial solution to the problem of determining the number of lozenge tilings of a hexagon with sides a, b + 1, b, a + 1, b, b + 1, with the central unit triangle removed. For a = b, this settles an open problem posed by Propp 7]. Let a, b, c be positive integers, and denote by H the hexagon whose side-lengths are (in cyclic order) a, b, c, a, b, c and all whose angles have 12...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 2015

ISSN: 0377-9017,1573-0530

DOI: 10.1007/s11005-015-0794-6