Lower bounds for the blow-up time in a non-local reaction–diffusion problem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the blow-up of a non-local parabolic problem

We investigate the conditions under which the solution of the initial-boundary value problem of the non-local equation ut = u + λ f (u)/( ∫ Ω f (u) dx) p , where Ω is a bounded domain of RN and f (u) is a positive, increasing, convex function, performs blow-up. c © 2005 Elsevier Ltd. All rights reserved.

متن کامل

Bounds for blow-up time in nonlinear parabolic problems

A first order differential inequality technique is used on suitably defined auxiliary functions to determine lower bounds for blow-up time in initial-boundary value problems for parabolic equations of the form ut = div ( ρ(u)gradu )+ f (u) if blow-up occurs. In addition, conditions which ensure that blow-up occurs or does not occur are presented. © 2007 Elsevier Inc. All rights reserved.

متن کامل

Lower Bounds for Blow-up Time of Porous Medium Equation with Nonlinear Flux on Boundary

tributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we investigate the lower bounds for the blow-up time of the non-negative solutions of porous medium equation with Neumann boundary conditions. We find that the blow-up time are bounded below b...

متن کامل

Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation

The generalized Korteweg-de Vries equations are a class of Hamiltonian systems in infinite dimension derived from the KdV equation where the quadratic term is replaced by a higher order power term. These equations have two conservation laws in the energy space H1 (L2 norm and energy). We consider in this paper the critical generalized KdV equation, which corresponds to the smallest power of the...

متن کامل

BLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM

In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2011

ISSN: 0893-9659

DOI: 10.1016/j.aml.2010.12.042