Low-Rank Tensor Completion and Total Variation Minimization for Color Image Inpainting
نویسندگان
چکیده
منابع مشابه
Tensor completion using total variation and low-rank matrix factorization
In this paper, we study the problem of recovering a tensor with missing data. We propose a new model combining the total variation regularization and low-rank matrix factorization. A block coordinate decent (BCD) algorithm is developed to efficiently solve the proposed optimization model. We theoretically show that under some mild conditions, the algorithm converges to the coordinatewise minimi...
متن کاملScaled Nuclear Norm Minimization for Low-Rank Tensor Completion
Minimizing the nuclear norm of a matrix has been shown to be very efficient in reconstructing a low-rank sampled matrix. Furthermore, minimizing the sum of nuclear norms of matricizations of a tensor has been shown to be very efficient in recovering a low-Tucker-rank sampled tensor. In this paper, we propose to recover a low-TT-rank sampled tensor by minimizing a weighted sum of nuclear norms o...
متن کاملFactor Matrix Nuclear Norm Minimization for Low-Rank Tensor Completion
Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix rank minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix rank mini...
متن کاملFactor Matrix Trace Norm Minimization for Low-Rank Tensor Completion
Most existing low-n-rank minimization algorithms for tensor completion suffer from high computational cost due to involving multiple singular value decompositions (SVDs) at each iteration. To address this issue, we propose a novel factor matrix trace norm minimization method for tensor completion problems. Based on the CANDECOMP/PARAFAC (CP) decomposition, we first formulate a factor matrix ran...
متن کاملLow-tubal-rank Tensor Completion using Alternating Minimization
The low-tubal-rank tensor model has been recently proposed for real-world multidimensional data. In this paper, we study the low-tubal-rank tensor completion problem, i.e., to recover a third-order tensor by observing a subset of its elements selected uniformly at random. We propose a fast iterative algorithm, called Tubal-AltMin, that is inspired by a similar approach for low-rank matrix compl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2980058