Low-Order Spectral Analysis of the Kirchhoff Matrix for a Probabilistic Graph With a Prescribed Expected Degree Sequence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the additive degree-Kirchhoff index with the Laplacian matrix

For any simple connected undirected graph, it is well known that the Kirchhoff and multiplicative degree-Kirchhoff indices can be computed using the Laplacian matrix. We show that the same is true for the additive degree-Kirchhoff index and give a compact Matlab program that computes all three Kirchhoffian indices with the Laplacian matrix as the only input.

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

a swot analysis of the english program of a bilingual school in iran

با توجه به جایگاه زبان انگلیسی به عنوان زبانی بین المللی و با در نظر گرفتن این واقعیت که دولت ها و مسئولان آموزش و پرورش در سراسر جهان در حال حاضر احساس نیاز به ایجاد موقعیتی برای کودکان جهت یاد گیری زبان انگلیسی درسنین پایین در مدارس دو زبانه می کنند، تحقیق حاضر با استفاده از مدل swot (قوت ها، ضعف ها، فرصتها و تهدیدها) سعی در ارزیابی مدرسه ای دو زبانه در ایران را دارد. جهت انجام این تحقیق در م...

15 صفحه اول

Spectral Radius and Degree Sequence of a Graph

Let G be a simple connected graph of order n with degree sequence d1, d2, · · · , dn in non-increasing order. The spectral radius ρ(G) of G is the largest eigenvalue of its adjacency matrix. For each positive integer ` at most n, we give a sharp upper bound for ρ(G) by a function of d1, d2, · · · , d`, which generalizes a series of previous results.

متن کامل

Spectral radius and Average 2-Degree sequence of a Graph

Let G be a simple connected graph of order n with average 2degree sequence M1 ≥ M2 ≥ · · · ≥ Mn. Let ρ(G) denote the spectral radius of the adjacency matrix of G. We show that for each 1 ≤ l ≤ n and for any b ≥ max {di/dj | i ∼ j}, ρ(G) ≤ Ml − b+ √ (Ml + b)2 + 4b ∑l−1 i=1(Mi −Ml) 2 with equality if and only if M1 = M2 = · · · = Mn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Circuits and Systems I: Regular Papers

سال: 2009

ISSN: 1549-8328,1558-0806

DOI: 10.1109/tcsi.2009.2023758