منابع مشابه
A loosely Bernoulli counterexample machine
In Rudolph’s paper on minimal self joinings [7] he proves that a rank one mixing transformation constructed by Ornstein [5] can be used as the building block for many ergodic theoretical counterexamples. In this paper we show that Ornstein’s transformation can be altered to create a general method for producing zero entropy, loosely Bernoulli counterexamples. This paper answers a question posed...
متن کاملThe Pascal adic transformation is loosely Bernoulli
The Pascal adic transformation is one of the simplest examples of adic transformations. We recall its construction by cutting and stacking and prove that it is loosely Bernoulli. 2003 Elsevier SAS. All rights reserved. Résumé La transformation Pascal adique est un des exemples les plus simples de transformations adiques. Nous rappelons sa construction par découpage et empilement et montrons q...
متن کاملFinite Rank Zd Actions and the Loosely Bernoulli Property
We de ne nite rank for Z actions and show that those nite rank actions with a certain tower shape are loosely Bernoulli for d
متن کاملHomogeneous cartesian products
A graph G is 1-homogeneous if certain isomorphisms between similarly embedded induced subgraphs of G extend to automorphisms of G. We show that the only connected composite 1-homogeneous graphs are the cube, and Kn ×K2 and Kn ×Kn with n ≥ 2.
متن کاملCorners in Cartesian products
This note is an illustration of the density-increment method used in the proof of the density Hales-Jewett theorem for k = 3. (Polymath project [2]) I will repeat the argument applying it to a problem which is easier than DHJ. In the last section I will describe the proof of the density Hales-Jewett theorem for k = 3. The results stated here are direct interpretations of the project’s results, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1979
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1979-0512061-9