Longitudinal Data Analysis with Structural Equations
نویسندگان
چکیده
منابع مشابه
Longitudinal data analysis with structural equations
In this paper we review different structural equation models for the analysis of longitudinal data: (a) univariate models of observable variables, (b) multivariate models of observable variables, (c) models with latent variables, (d) models that are unconditioned or conditioned to other variables (depending on the variability of the independent variables: time-varying or time-invariant, and dep...
متن کاملConditional Dependence in Longitudinal Data Analysis
Mixed models are widely used to analyze longitudinal data. In their conventional formulation as linear mixed models (LMMs) and generalized LMMs (GLMMs), a commonly indispensable assumption in settings involving longitudinal non-Gaussian data is that the longitudinal observations from subjects are conditionally independent, given subject-specific random effects. Although conventional Gaussian...
متن کاملEfficiency Analysis of Road Safety Pillars by Applying the Results of a Structural Equations Model in Data Envelopment Analysis
Assessment of road safety performance of countries and their comparison is essential in guiding future decisions. The objective of this study is to search for effective safety pillars in road safety capacity strengthening based on the experiences of the leading countries. In this study, we first try to use the results of a structural equations model with partial least squares approach to select...
متن کاملUsing Generalized Estimating Equations for Longitudinal Data Analysis
The generalized estimating equation (GEE) approach of Zeger and Liang facilitates analysis of data collected in longitudinal, nested, or repeated measures designs. GEEs use the generalized linear model to estimate more efficient and unbiased regression parameters relative to ordinary least squares regression in part because they permit specification of a working correlation matrix that accounts...
متن کاملMarginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data
A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Methodology
سال: 2008
ISSN: 1614-1881,1614-2241
DOI: 10.1027/1614-2241.4.1.37