Long Time Behavior of Solution for Generalized BBM Equation in R<sup>N</sup>
نویسندگان
چکیده
منابع مشابه
Elliptic solutions to a generalized BBM equation
An approach is proposed to obtain some exact explicit solutions in terms of the Weierstrass’ elliptic function ℘ to a generalized Benjamin-Bona-Mahony (BBM) equation. Conditions for periodic and solitary wave like solutions can be expressed compactly in terms of the invariants of ℘. The approach unifies recently established ad-hoc methods to a certain extent. Evaluation of a balancing principle...
متن کاملGeneralized solution of Sine-Gordon equation
In this paper, we are interested to study the Sine-Gordon equation in generalized functions theory introduced by Colombeau, in the first we give result of existence and uniqueness of generalized solution with initial data are distributions (elements of the Colombeau algebra). Then we study the association concept with the classical solution.
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملExact Solutions to a Generalized BBM Equation with Variable Coefficients
An auxiliary equation technique is applied to investigate a generalized Benjamin-Bona-Mahony equation with variable coefficients. Many exact traveling wave solutions are obtained which include algebraic solutions, solitons, solitary wave solutions and trigonometric solutions. Mathematics Subject Classification: 35Q53, 35B35
متن کاملAnalytical solution for a generalized space-time fractional telegraph equation
In this paper, we consider a nonhomogeneous space-time fractional telegraph equation defined in a bounded space domain, which is obtained from the standard telegraph equation by replacing the firstor second-order time derivative by the Caputo fractional derivative Dt , α > 0; and the Laplacian operator by the fractional Laplacian (−∆) , β ∈ (0, 2]. We discuss and derive the analytical solutions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure Mathematics
سال: 2012
ISSN: 2160-7583,2160-7605
DOI: 10.12677/pm.2012.22017