Long Short-Term Memory Network-Based HVDC Systems Fault Diagnosis under Knowledge Graph
نویسندگان
چکیده
To enhance the precision of fault diagnosis for high-voltage direct-current (HVDC) systems by effectively extracting various types characteristics, a method based on long short-term memory network (LSTM) is proposed in this paper. The relies knowledge graph platform and developed using measured data from four an HVDC substation located southwest China. Firstly, constructed, then waveform preprocessed divided into training set test set. Various optimizers are employed to train LSTM. strategy’s accuracy calculated compared with recurrent neural (RNN), eXtreme Gradient Boosting (XGBoost), support vector machine (SVM), Naive Bayes classifier, probabilistic networks (PNN), classification learner (CL), which commonly used diagnosis. Results indicate that achieves over 95%, 30% higher than RNN, 8% XGBoost, 4% SVM, 7% Bayes, 40% PNN, 42% respectively; also has minimum time cost, fully demonstrating its superiority effectiveness other methods.
منابع مشابه
the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus
از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...
15 صفحه اولLong Short-term Memory
Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden s...
متن کاملLong Short-Term Memory
Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, ...
متن کاملExploiting Explicit Matching Knowledge with Long Short-Term Memory
Recently neural network models are widely applied in text-matching tasks like community-based question answering (cQA). The strong generalization power of neural networks enables these methods to find texts with similar topics but miss detailed matching information. However, as proven by traditional methods, the explicit lexical matching knowledge is important for effective answer retrieval. In...
متن کاملChinese Grammatical Error Diagnosis with Long Short-Term Memory Networks
Grammatical error diagnosis is an important task in natural language processing. This paper introduces our Chinese Grammatical Error Diagnosis (CGED) system in the NLP-TEA-3 shared task for CGED. The CGED system can diagnose four types of grammatical errors which are redundant words (R), missing words (M), bad word selection (S) and disordered words (W). We treat the CGED task as a sequence lab...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2023
ISSN: ['2079-9292']
DOI: https://doi.org/10.3390/electronics12102242