Long lead-time radar rainfall nowcasting method incorporating atmospheric conditions using long short-term memory networks

نویسندگان

چکیده

High-resolution radar rainfall data have great potential for predictions up to 6 h ahead (nowcasting); however, conventional extrapolation approaches based on in-built physical assumptions yield poor performance at longer lead times (3–6 h), which limits their operational utility. Moreover, atmospheric factors in estimate errors are often ignored. This study proposed a nowcasting method that attempts achieve accurate of using long short-term memory (LSTM) networks. Atmospheric conditions were considered reduce errors. To build models LSTM networks (LSTM-RN), approximately 11 years radar, gauge rainfall, and from the UK obtained. Compared with built optical flow (OF-RN) random forest (RF-RN), LSTM-RN had lowest root-mean-square (RMSE), highest correlation coefficients (COR), mean bias closest 0. Furthermore, showed growing advantage times, RMSE decreasing by 17.99% 7.17% compared OF-RN RF-RN, respectively. The results also revealed strong relationship between weather conditions. provides an effective solution enhances forecast value supports practical

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stacked Long Short-term Memory Neural Networks

In this paper, we describe a novel approach to generate conference call-for-papers using Natural Language Processing and Long Short-Term Memory network. The approach has been successfully evaluated on a publicly available dataset.

متن کامل

Dialog state tracking using long short-term memory neural networks

Neural network based approaches have recently shown stateof-art performance in the Dialog State Tracking Challenge (DSTC). In DSTC, a tracker is used to assign a label to the state at each moment in an input sequence of a dialog. Specifically, deep neural networks (DNNs) and simple recurrent neural networks (RNNs) have significantly improved the performance of the dialog state tracking. In this...

متن کامل

Transmembrane Protein Prediction using Long Short-Term Memory Networks

Transmembrane Protein Prediction is a problem with many uses as experimental determination of protein structures is still expensive and for different purposes it can be useful to know the structure. Here I introduce a small long short-term memory network based model which gives a precision of 67 ± 3 and a recall of 71± 3. The model manages, when compared to TMSEG [3], slightly worse but is stil...

متن کامل

Dialogue State Tracking using Long Short Term Memory Neural Networks

We propose a dialogue state tracker based on long short term memory (LSTM) neural networks. LSTM is an extension of a recurrent neural network (RNN), which can better consider distant dependencies in sequential input. We construct a LSTM network that receives utterances of dialogue participants as input, and outputs the dialogue state of the current utterance. The input utterances are separated...

متن کامل

Long Short-term Memory

Model compression is significant for the wide adoption of Recurrent Neural Networks (RNNs) in both user devices possessing limited resources and business clusters requiring quick responses to large-scale service requests. This work aims to learn structurally-sparse Long Short-Term Memory (LSTM) by reducing the sizes of basic structures within LSTM units, including input updates, gates, hidden s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Environmental Science

سال: 2023

ISSN: ['2296-665X']

DOI: https://doi.org/10.3389/fenvs.2022.1054235