منابع مشابه
Long cycles in unbalanced bipartite graphs
Let G[X,Y ] be a 2-connected bipartite graph with |X| ≥ |Y |. For S ⊆ V (G), we define δ(S;G) := min{dG(v) : v ∈ S}. We define σ1,1(G) := min{dG(x) + dG(y) : x ∈ X, y ∈ Y, xy / ∈ E(G)} and σ2(X) := min{dG(x) + dG(y) : x, y ∈ X,x 6= y}. We denote by c(G) the length of a longest cycle in G. Jackson [J. Combin. Theory Ser. B 38 (1985), 118–131] proved that c(G) ≥ min{2δ(X;G) + 2δ(Y ;G)− 2, 4δ(X;G)...
متن کاملEdge condition for long cycles in bipartite graphs
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...
متن کاملBalanced cycles and holes in bipartite graphs
Bruce Reed asks the following question: Can we determine whether a bipartite graph contains a chordless cycle whose length is a multiple of 4? We show that the two following more general questions are equivalent and we provide an answer. Given a bipartite graph G where each edge is assigned a weight + 1 or I, l determine whether G contains a cycle whose weight is a multiple of 4, l determine wh...
متن کاملDisjoint hamiltonian cycles in bipartite graphs
Let G = (X, Y ) be a bipartite graph and define σ 2(G) = min{d(x) + d(y) : xy / ∈ E(G), x ∈ X, y ∈ Y }. Moon and Moser [5] showed that if G is a bipartite graph on 2n vertices such that σ 2(G) ≥ n + 1 then G is hamiltonian, sharpening a classical result of Ore [6] for bipartite graphs. Here we prove that if G is a bipartite graph on 2n vertices such that σ 2(G) ≥ n+ 2k− 1 then G contains k edge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2012
ISSN: 0012-365X
DOI: 10.1016/j.disc.2012.02.019