Logistic Regression Classification by Principal Component Selection
نویسندگان
چکیده
منابع مشابه
Robust Principal Component Functional Logistic Regression
In this paper, we discuss the estimation of the parameter function for a functional logistic regression model in the presence of outliers. We consider ways that allow for the parameter estimator to be resistant to outliers, in addition to minimizing multicollinearity and reducing the high dimensionality which is inherent with functional data. To achieve this, the functional covariates and funct...
متن کاملHigh-dimensional classification by sparse logistic regression
We consider high-dimensional binary classification by sparse logistic regression. We propose a model/feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the non-asymptotic bounds for the resulting misclassification excess risk. The bounds can be reduced under the additional low-noise condition. The proposed complexity penalty ...
متن کاملRobust Principal Component Regression
In this note we introduce a method for robust principal component regression. Robust principal components are computed from the predictor variables, and they are used afterwards for estimating a response variable by performing robust linear multiple regression. The performance of the method is evaluated at a test data set from geochemistry. Then it is used for the prediction of censored values ...
متن کاملMultilingual Animacy Classification by Sparse Logistic Regression
This paper presents results from three experiments on automatic animacy classification in Japanese and English. We present experiments that focus on solutions to the problem of reliably classifying a large set of infrequent items using a small number of automatically extracted features. We labeled a set of Japanese nouns as ±animate on the basis of reliable, surface-obvious morphological featur...
متن کاملTraffic Classification: Application-based feature selection using logistic regression
Recently, several statistical techniques using flow features have been proposed to address the problem of traffic classification. These methods achieve in general high recognition rates of the dominant applications and more random results for less popular ones. This stems from the selection process of the flow features, used as inputs of the statistical algorithm, which is biased toward those d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications for Statistical Applications and Methods
سال: 2014
ISSN: 2287-7843
DOI: 10.5351/csam.2014.21.1.061