Logarithmic convexity of extended mean values

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE FUNCTION (bx − ax)/x: LOGARITHMIC CONVEXITY AND APPLICATIONS TO EXTENDED MEAN VALUES

In the present paper, we first prove the logarithmic convexity of the elementary function b x −a x x , where x 6= 0 and b > a > 0. Basing on this, we then provide a simple proof for Schur-convex properties of the extended mean values, and, finally, discover some convexity related to the extended mean values.

متن کامل

Necessary and Sufficient Conditions for the Schur Harmonic Convexity or Concavity of the Extended Mean Values

In this paper, we prove that the extended values E(r, s;x, y) are Schur harmonic convex (or concave, respectively) with respect to (x, y) ∈ (0,∞) × (0,∞) if and only if (r, s) ∈ {(r, s) : s ≥ −1, s ≥ r, s+ r + 3 ≥ 0} ∪ {(r, s) : r ≥ −1, r ≥ s, s+r+3 ≥ 0} (or {(r, s) : s ≤ −1, r ≤ −1, s+r+3 ≤ 0}, respectively).

متن کامل

Logarithmic Convexity of Gini Means

where x and y are positive variables and r and s are real variables. They are also called sum mean values. There has been a lot of literature such as [3, 4, 5, 6, 9, 10, 11, 12, 13, 19, 20, 21] and the related references therein about inequalities and properties of Gini means. The aim of this paper is to prove the monotonicity and logarithmic convexity of Gini means G(r, s;x, y) and related fun...

متن کامل

A New Proof of Monotonicity for Extended Mean Values

In this article, a new proof of monotonicity for extended mean values is given.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2001

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-01-06275-x