Log-Sum-Exp Neural Networks and Posynomial Models for Convex and Log-Log-Convex Data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Twofold exp and log

This article is about twofold arithmetic [1, 2]. Here I introduce algorithms and experimental code for twofold variant of C/C++ standard functions exp() and log(), and expm1() and log1p(). Twofold function y0 + y1 ≈ f(x0 + x1) is nearly 2x-precise so can assess accuracy of standard one. Performance allows assessing on-fly: twofold texp() over double is ~10x times faster than expq() by GNU quadm...

متن کامل

Convex Hull with Optimal Query Time and O ( log n · log log n ) Update Time

The dynamic maintenance of the convex hull of a set of points in the plane is one of the most important problems in computational geometry. We present a data structure supporting point insertions in amortized O(log n · log log logn) time, point deletions in amortized O(log n · log logn) time, and various queries about the convex hull in optimal O(log n) worst-case time. The data structure requi...

متن کامل

Inequalities for 3-log-convex Functions

This note gives a simple method for obtaining inequalities for ratios involving 3log-convex functions. As an example, an inequality for Wallis’s ratio of Gautchi-Kershaw type is obtained. Inequalities for generalized means are also considered.

متن کامل

On Isoperimetric Inequalities for Log-convex Measures

Let μ = ρdx be a Borel measure on Rd. A Borel set A ⊂ R is a solution of the isoperimetric problem if for any B ⊂ R satisfying μ(A) = μ(B) one has μ(∂A) ≤ μ(∂B), where μ(∂A) = ∫ ∂A ρ dHd−1 is the corresponding surface measure. There exists only a small number of examples where the isoperimetric problem has an exact solution. The most important case is given by Lebesgue measure λ on R, the solut...

متن کامل

Accelerated Batch Learning of Convex Log-linear Models for LVCSR

This paper describes a log-linear modeling framework suitable for large-scale speech recognition tasks. We introduce modifications to our training procedure that are required for extending our previous work on log-linear models to larger tasks. We give a detailed description of the training procedure with a focus on aspects that impact computational efficiency. The performance of our approach i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2020

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2019.2910417