Log Iitaka conjecture for abundant log canonical fibrations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Log - Canonical Forms and Log Canonical Singularities

For a normal subvariety V of C with a good C∗-action we give a simple characterization for when it has only log canonical, log terminal or rational singularities. Moreover we are able to give formulas for the plurigenera of isolated singular points of such varieties and of the logarithmic Kodaira dimension of V \{0}. For this purpose we introduce sheaves of m-canonical and L2,m-canonical forms ...

متن کامل

Homogeneous fibrations on log Calabi-Yau varieties

Weprove a structure theorem for the Albanese maps of varieties withQ-linearly trivial log canonical divisors. Our start point is the action of a nonlinear algebraic group on a projective variety.

متن کامل

On Real Log Canonical Thresholds

We introduce real log canonical threshold and real jumping numbers for real algebraic functions. A real jumping number is a root of the b-function up to a sign if its difference with the minimal one is less than 1. The real log canonical threshold, which is the minimal real jumping number, coincides up to a sign with the maximal pole of the distribution defined by the complex power of the absol...

متن کامل

Abundance Theorem for Semi Log Canonical Threefolds

for semi log canonical threefolds. The abundance conjecture is a very important problem in the birational classi cation of algebraic varieties. The abundance theorem for semi log canonical surfaces was proved in [12, Chapter 8, 12] by L.-Y. Fong, S. Keel, J. Koll ar, and J. McKernan. Their proof uses semiresolution, etc. and has some combinatorial complexities. So we simplify their proof and st...

متن کامل

Min-Rank Conjecture for Log-Depth Circuits

A completion of an m-by-n matrix A with entries in {0, 1, ∗} is obtained by setting all ∗-entries to constants 0 or 1. A system of semi-linear equations over GF2 has the form Mx = f(x), where M is a completion of A and f : {0, 1}n → {0, 1}m is an operator, the ith coordinate of which can only depend on variables corresponding to ∗-entries in the ith row of A. We conjecture that no such system c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 2020

ISSN: 0386-2194

DOI: 10.3792/pjaa.96.017