Log-concavity of the genus polynomials for a sequence of cubic Halin graphs
نویسندگان
چکیده
منابع مشابه
Embeddings of Cubic Halin Graphs: Genus Distributions∗
We derive an O(n)-time algorithm for calculating the genus distribution of a given 3-regular Halin graph G; that is, we calculate the sequence of numbers g0(G), g1(G), g2(G), . . . on the respective orientable surfaces S0, S1, S2, . . . . Key topological features are a quadrangular decomposition of plane Halin graphs and a new recombinant-strands reassembly process that fits pieces together thr...
متن کاملLog-concavity of the genus polynomials of Ringel Ladders
A Ringel ladder can be formed by a self-bar-amalgamation operation on a symmetric ladder, that is, by joining the root vertices on its end-rungs. The present authors have previously derived criteria under which linear chains of copies of one or more graphs have log-concave genus polynomials. Herein we establish Ringel ladders as the first significant non-linear infinite family of graphs known t...
متن کاملOn the log-concavity of Laplacian characteristic polynomials of graphs
Let G be a graph and L(G) be the Laplacian matrix of G. In this article, we first point out that the sequence of the moduli of Laplacian coefficients of G is log-concave and hence unimodal. Using this fact, we provide an upper bound for the partial sums of the Laplacian eigenvalues of G, based on coefficients of its Laplacian characteristic polynomial. We then obtain some lower bounds on the al...
متن کاملStrong edge-coloring for cubic Halin graphs
A strong edge-coloring of a graph G is a function that assigns to each edge a color such that two edges within distance two apart must receive different colors. The minimum number of colors used in a strong edge-coloring is the strong chromatic index of G. Lih and Liu [14] proved that the strong chromatic index of a cubic Halin graph, other than two special graphs, is 6 or 7. It remains an open...
متن کاملUnimodality and Log-Concavity of Polynomials
A polynomial is unimodal if its sequence of coefficients are increasing up to an index, and then are decreasing after that index. A polynomial is logconcave if the sequence of the logarithms of the coefficients is concave. We prove that if P (x) is a polynomial with nonnegative non-decreasing coefficients then P (x+z) is unimodal for any natural z. Furthermore, we prove that if P (x) is a log-c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorics
سال: 2014
ISSN: 2156-3527,2150-959X
DOI: 10.4310/joc.2014.v5.n2.a4